
 

Robust Autonomous Vehicles 

 

DARPA Urban Challenge 

1 June 2007 

University of Utah 

 

Thomas C. Henderson, Mark Minor, Sam Drake, Andy 
Hetrick, Jacob Quist, Jared Roberts, Hamid Sani, Ramya 
Bandaru, Marques Rasmussen, Adam Collins, Yu Sun, 

Suraj, Xiuyi Fan, Ed St. Louis, Shigenori Mikuriya, Ken Dean 

University of Utah, Salt Lake City, UT 84112 

Corresponding Author: tch@cs.utah.edu 

 

 

 

 

 

 

 

DISCLAIMER: The information contained in this paper does not represent the official 
policies, either expressed or implied, of the Defense Advanced Research Projects Agency 
(DARPA) or the Department of Defense.  DARPA does not guarantee the accuracy or 
reliability of the information in this paper. 



 2

 

Abstract 

Autonomous vehicles are complex systems with many interacting hardware and software 
components operating in an uncertain and dynamic environment.  Organizational 
principles and procedures are described which help assure reliable and intelligent actions 
on the part of the vehicle.  This includes both high-level system models, as well as 
process level monitoring and testing to verify and validate the system components on the 
fly.  We propose a high-level model based on a probabilistic characterization of the 
inputs and outputs (or other observable elements) of the modules, and for individual 
components, we propose to exploit Instrumented Logical Sensors.  These methodologies 
are to be demonstrated in the context of the autonomous vehicle. 

1.0  Introduction and Overview 

The 2007 DARPA Urban Challenge (DUC) is a competition that requires driverless cars 
to navigate through an urban environment. The 2007 DUC is a continuation of the 2005 
DARPA Grand Challenge in which autonomous vehicles navigated through an off-road 
environment.  
 
Autonomous vehicle research has two major directions: (1) intelligent highway and 
transportation systems, and (2) unmanned vehicles for dangerous environments (e.g., 
underground mines, battlefield, planet exploration).  Here we are mainly concerned with 
the latter, although basic results may be relevant to both. 
 
DARPA has been the major funding source for the research in this area with the 
Unmanned Ground Vehicle Program in the 1990's.  Results fell far short of expectations 
due mainly to two difficulties: (1) incorporating human-like performance, and (2) 
robustness.  Attempts to address these issues have been made: 

• subsumption architecture: a reactive system of hardwired responses to sensor 
values resulted in very robust and even natural looking operation, but lacked the 
ability to demonstrate human-level performance or even basic predictability of 
behavior. (See [3].) 

• probabilistic robotics: sampling methods and Bayesian methods have been used 
to reduce the complexity of the high-level representations and full joint 
probability distributions; this approach has demonstrated good performance in a 
number of highly structured environments (e.g., museum tours, etc.).  (See [16].) 

However, the major problems with autonomous unmanned vehicles remain unsolved. 
 
DARPA created a Grand Challenge cross country race competition in 2004-2005 to push 
researchers and industry to solve this problem.  A 140-mile race from California to 
Nevada was held, and several teams accomplished the trip, while the Stanford team won 
the prize ($2M).  DARPA is now running a second competition - the Urban Challenge - 
in which vehicles must navigate through an urban environment (see [17]).  Note that the 
U.S. Congress has mandated that 33% of all military land vehicles be autonomously 
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operated by 2015, and 66% by 2025. Since there are over 360,000 U.S. military vehicles 
with huge markets both in retro-fit packages and new vehicles, a market of $8-10B has 
been estimated.  Thus, there is great pressure to put energy and support into solving the 
remaining scientific and technological issues to make such vehicles viable. 
 
We propose to initiate new research and development in the area of intelligent 
autonomous vehicles.  The last few years have seen a tremendous increase in interest in 
this area in terms of scientific approaches as well as implementations for use in real-
world scenarios.  The underlying scientific issues are: 
 

• What constitutes intelligence?  Matching human performance in situation 
understanding and behavior selection is a very difficult problem. 

 We propose to explore the encapsulation of human perception-action modules 
in terms of multi-agent systems. 

• What is essential for autonomy?  The basic elements include self-selected goals, 
some form of knowledge representation, some means of communication and some 
persistence of self state. 

 We propose to develop a rudimentary theory of software/hardware artifact 
feedback control based on Software Kalman Filters.  This involves choosing 
optimal control actions based on system measurements in order to track a desired 
execution model. 

• What hardware embodiments lend themselves to support intelligent 
autonomous behavior?  Software and sensing requirements can be minimized 
with the proper selection of hardware mechanisms. 

 We propose to ultimately explore these issues in various implementations 
(aerial, ground and marine), but in the context of this work we focus on unmanned 
ground vehicles. 
 

The general system architecture requires modules for: perception (sensing and 
information extraction), localization and map building (knowledge database, environment 
model and local map), cognition and path planning (position, global map and mission 
commands), and motion control (path execution and obstacle avoidance).  For many of 
these, traditional methods will be exploited; however, the most significant barriers are: 
(1) human-like behavior - here we propose to explore a perception/action loop based on 

a multi-agent framework, and 
(2) overall system robustness - for this we will develop the Software Kalman Filter. 

 
For the first item, we propose to study a set of cooperating software agents (micro-
experts), Ai, each of which produces various outputs using a set of parameters and 
thresholds, Ti, and each having an associated model (or set of models), Pi(Xi | Ti), 
describing the agent's variance from the ideal in terms of some appropriate measure. 
Knowledge of three sorts (physical, image analysis, and structural interpretation) is 
available and informs the agents' actions and understanding of each other's results.  
Higher-level control processes may exploit this in several ways: 

• Explore the threshold space for global optima. 
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• Control acquisition of new data (e.g., view token generation as state 
estimation and select agent action that optimizes information gain). 

• Incorporate knowledge in abstract form and communicate abstractions 
between agents and users. 

• Inform the software engineering and system development with deep 
knowledge of the relationships between modules and their parameters (at 
least in a statistical sense). 

 
The objective of  the second item, the Software Kalman Filter work, is to develop better 
models of software systems which allow designers to make crucial knowledge explicit, 
accessible and persistent, as well as to use such knowledge as the basis for a rigorous, 
mathematically well-defined operational framework.  Stochastic optimization techniques 
are proposed as the computational framework in which to model and execute complex 
software systems (see [9] for details).  Software design will be based on firm engineering 
principles with well-identified models, including those for error and noise processes. 
 
1.1 System Architecture 
 
Figure 1 gives a simplified view of the super architecture and how it relates to the 
Cognition System. The entire system can be viewed as a loop of messages: 
 

(i) The perception module receives data from the sensors and attempts 
to construct an accurate view of the state of the world and the state 
of the vehicle.  

(ii) The cognition system uses the World State and Vehicle State to 
execute its behaviors. 

(iii) The cognition systems issues commands to a Vehicle Control 
Interface, which translates those signals to physical actions in the 
vehicle. 
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Figure 1. The super architecture and how it relates to the Cognition System. 
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2.0 Cognition Architecture 

The overarching purpose of the cognition system is to navigate the vehicle safely through 
a pre-specified number of checkpoints. This entails a number of sub-features and 
behaviors. For example, the system must perceive the road and any obstacles; it must 
understand how to traverse the stretch of road while avoiding obstacles; it must know 
how to handle turns and how to pass other vehicles; and it must use its limited perception 
to figure out its surroundings. These tasks may seem trivial to experienced human 
drivers, but it requires a great amount of research and mathematical generalization to 
properly encode into software. 
 
Our system is built to handle urban environments. There is no one-size-fits-all solution to 
autonomous vehicles. A system that performs well in an off-road environment (such as 
the 2005 Challenge) will not necessarily perform well in an urban environment. There are 
different sets of behaviors and rules that the vehicle must follow. We aim to encode these 
behaviors and build a system that performs well in an urban setting. 
 
The Cognition System is comprised of three critical sub-modules: (1) the Scheduler, (2) 
the Executive, and (3) the Real Time Controller. These modules run concurrently in a 
master/slave manner. This means that the upper modules have ultimate control over the 
lower modules.  
 
The upper modules are responsible for entire scope of the mission, while the lower 
modules are responsible for immediate tasks. This helps break the project into more 
manageable pieces.  
 
In addition to the three critical components, we introduce the Simulator and Visualization 
modules. These supplementary modules will not be present while the physical vehicle is 
in operation, but they are used to build, debug, and demonstrate the inner workings of the 
cognition system.  
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Figure 2. The major components of the Cognition System. The simulator components (in dashed 
lines) represent the harness in which the Cognition System executes. A Visualization module is 
also present, the gray lines indicate that the Visualization module is not a critical component.  

 
2.1 Scheduler  
 
The Scheduler is the topmost module and is responsible for tasks related to the entire 
mission. It receives a pre-specified map file and computes an entire-path plan that 
optimally (shortest path) traverses the pre-specified checkpoints.  
 
Additionally, the Scheduler is responsible for breaking down the map into shorter 
segments called links.  (Our approach is based on that of Gowdy; see [15].)  A link is 
simply a set of two points, usually a straight line, which is given to the Executive for 
further processing. As explained below, there are different types of links, so the 
Scheduler must infer the proper link type from the map.  
  
The Scheduler receives signals from the Executive. The Executive signals the Scheduler 
when it has finished traversing its delegated link, or when an impassable obstacle is 
detected. In such a scenario, the Scheduler replans the entire mission around the obstacle.  
 
The Scheduler is comprised of four major components. 
 
The Progress Manager is responsible for keeping track of the progress of the plan (see 
below). It keeps track of which links have been traversed, as well as issuing new links 
when signaled.  
 
Once the Progress Manager decides to issue a new link, it sends a message to the Link 
Manager. The Link Manager is responsible for inferring the type of link to be produced. 
The following table gives a brief description of major link types.   
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Progress Manager

Link Manager

Executive Facade

Planner

Link

Map

Mission

 
  

 Figure 3. The major components of the Scheduler.  
 

 
Link Type Description 
Straight-Line Travel in a straight line 
Right-Hand-Turn Make a right hand turn (at an intersection) 
Left-Hand-Turn Make a left hand turn (at an intersection)  
Zone-Exit Travel to a specified position without regard to 

lanes in the road (i.e. a blacktop surface without 
traffic indicators)  

U-Turn Turn around so that the vehicle is in the opposing 
lane.  

Park Position the vehicle in a parking spot.  
 
Once the appropriate link object has been created, it is sent to the Executive through the 
Executive Façade. The Executive Façade is simply an interface wrapper that translates 
messages between the Executive and Scheduler. A list of major messages is given below:  

 
Message Direction Description 
New-Link Scheduler 

 
Executive

Sends a new link object (as described above). 

Link-
Complete 

Scheduler 
 

Executive

Issued by the Executive when a link has been 
traversed and the Executive is ready for the 
next link.  

Link-
Impassable 

Scheduler 
 

Executive

Issued by the Executive when a link is 
perceived impassible (i.e. roadblocks)  
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2.2 Executive  
 
The Executive is the middle module and is responsible for navigating the vehicle through 
a link. It receives links from the Scheduler and then computes a route that optimally 
traverses that link.  
 
The Executive will break down the links into smaller segments called sub-links. A sub-
link is a target point and orientation that is given to the Real Time Controller for further 
processing. The Executive must decompose the sub-link well enough so that the Real 
Time Controller does not need to infer anything special about it. 
 
Based on the type of link received from the Scheduler, the Executive must execute a 
certain behavior. The simplest case is the Straight-Line link. In this scenario, the 
Executive must simply create sub-links in a straight line towards the end point. A more 
complex link is the U-Turn link. In this scenario, the link still has a two-point tuple and 
the Executive must infer the appropriate sequence of sub-links that will take the vehicle to 
the specified End Point.  
 
The Executive receives signals from the Real Time Controller indicating that it has 
completed or is unable to complete the assigned path. In the latter case, the Executive 
must deduce whether the obstacle is passable in the current link segment (e.g., if there is 
an obstacle in the current lane, it decide if it can be passed on the left). If it is passable, 
then the Executive must load a behavior to pass the obstacle. If it is not passable, then the 
Executive must signal the Scheduler, whereupon the Scheduler will recompute an entire 
mission path. Otherwise, the Executive signals the Scheduler when the specified link is 
traversed and wait for further commands.  
 
The Executive is comprised of four major components. These components are described 
in Figure 4.  
 
As stated above, different types of behaviors are tied to different types of links. These 
behaviors are loaded into the Progress Manager, which acts as a harness for the current 
behavior. Each behavior handles links differently. For example, the Straight-line 
behavior will progress differently than the U-Turn behavior. Therefore, many of the sub-
modules in the Progress Manager act as tools and utilities to help the currently executing 
behavior.  
 
The Sub-Link Decomposer is specific to the behavior type. But its general purpose is to 
create sub-links from the parent link constrained to the specific rules of the behavior.  
 
The Executive is the most complex module of the three components. Thus, this design of 
abstract behaviors will allow other team members to work on behaviors in parallel. 
 
Once the Progress Manager decides to issue a new sub-link, it sends the sub-link object to 
the Real-Time Controller Interface. The Real-Time Controller interface will in turn send 
the message to the Real Time Controller. A list of major messages is given below.  
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Scheduler

Progress Manager 
(Behavior Harness)

Real Time Controller 
Interface

Sub-Link Decomposer

Behavior Loader

Sub-Link

Sub-Link

Link

Real Time Controller

World State

Vehicle State

 
Figure 4. Major components of the Executive  

 
 

Message Direction Description 
New Sub-
Link 

Executive 
 

Real Time 
Controller 

Sends a new sub-link object (as described 
above).  

Sub-Link 
Complete 

Executive 
 

Real Time 
Controller 

Issued by the Real Time Controller when 
a path has been traversed and the Real 
Time Controller is ready for the next 
path.  

Sub-Link 
Impassable 
(Current 
Lane) 

Executive 
 

Real Time 
Controller 

Issued by the Real Time Controller when 
the current lane is impassible (but not 
necessarily an adjacent lane.)  

Emergency 
Stop 

Executive 
 

Real Time 
Controller 

Sent by the Real Time Controller when 
an immediate obstacle was detected and 
the Vehicle has been stopped.  

 
2.3 Real Time Controller  
 
The Real Time Controller (RTC) is the lowest-level processor in the system. It links 
directly to the vehicle’s control system and is the ultimate arbiter of control. Hence, the 
RTC’s primary responsibility is to ensure the safety of the vehicle.  
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The RTC module receives sub-links from the Executive. Sub-links are defined as target 
vectors and target orientations for the vehicle.  Additionally, the RTC is responsible for 
notifying the Executive when a sub-link has been traversed, or when it detects an obstacle 
that cannot be avoided.  
 
The RTC must continually monitor the perception inputs. If an immediate obstacle is 
detected, then the RTC must stop the vehicle and inform the Executive. Furthermore, it 
must ensure that the vehicle is center of the proper lane.  
 
The RTC may receive new sub-links from the Executive at any time. When a new sub-
link is received, then the RTC must plan a smooth path to arrive at the target with the 
correct orientation. The path must be planned such that the vehicle stays in the proper 
lane, and other minor obstacles are avoided.  
 
The RTC does not need to infer any special information about the sub-link. All inferences 
have been pre-computed by the Executive and Scheduler. Thus, the only intelligence the 
RTC must exhibit is (1) how to navigate to the target, and (2) how to handle obstacles. 
The RTC devotes resources to ensuring a safe and successful traversal of the sub-link.  
 
The major components of the RTC are given below.  

 

 
Figure 5. Major Components of the Real Time Controller  

 
The Cruise Manager is responsible for keeping track of the progress of the given sub-link. 
It continually monitors the immediate perception field (as generated by the Road 
Perception Interface) and ensures the vehicle is in the proper lane and that it will not hit 
any obstacles. When an obstacle is detected, or when it perceives the vehicle is not on 
center, it will use the Path Planner to create an updated plan. If the planner cannot create 
a plan, then the Cruise Manager signals the Executive that the sub-link is not traversable.  
 
Additionally, the RTC sends signals to the Vehicle Controller. The Vehicle Controller is 
an interface that can be interchanged with the simulator, or the actual vehicle. The major 
control outputs from the RTC are defined below:  
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Control 
Output 

Description 

Set Velocity Sets the vehicles velocity or a specified time ∆t. The ∆t 
is used by the lower modules to compute the appropriate 
acceleration that will bring the vehicle to the desired 
velocity. (In other words, we can’t specify an instant 
velocity, so we use the ∆t to control how fast we want to 
accelerate).  

Set Wheel 
Turn 

Sets the orientation of the wheels. For example, 0˚ moves 
straight ahead, 15˚ moves to the right, -15˚ moves to the 
left. etc. Note: This parameter does not define the vehicle 
orientation, just the wheel orientation. Additionally, this 
function has a ∆t parameter similar to above.  

 
2.4 Simulator  
 
The Simulator module is a supplementary system that is responsible for simulating the 
physical world in which the vehicle may operate. Although this is a supplementary 
system, it is vitally important to the development of the entire system.  

 

 
Figure 6. The internal structure of the Simulator 

 
The simulator is responsible for receiving control commands and then creating 
corresponding perception outputs. The outputs are generalized in the table below.  
 

Perception 
Output 

Description 

Coordinates The world coordinates of the vehicle.  
Orientation The direction that the vehicle is facing  
Wheel 
Orientation 

The orientation of the wheels in the vehicle’s reference 
frame.  
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Velocity The current velocity of the vehicle  
Odometer The total distance traveled by the vehicle from the start 

of the mission.  
Lane Position When the vehicle is traversing a lane, this perception 

output will indicate the degree of alignment with the road 
(i.e. dead center, too far left, or too far right) 

Immediate 
Obstacles 

Boolean values that indicate if a specified region in the 
vehicles immediate range is populated with an obstacle.  

 
 
In addition to the core perception outputs, advanced versions of the simulator may 
generate the following items:  

 
Perception 
Output 

Description 

Traversable 
terrain grid  

A data structure generated by a laser-range finder. It 
finds spikes in the immediate area that may be too steep 
for the vehicle. This data is used to populate a dense grid 
of traversable terrain of the surrounding area.  

Stop sign line 
vector 

The DARPA specifications require that the vehicle come 
to a complete stop before a stop sign’s white line. This 
perception output would give a relative vector to that 
line.  

Long range 
obstacles 

Long range items will be perceived with computer vision 
in the physical implementation. Since computer vision 
often generates probabilistic results, this output will give 
a relative vector with a probability of certainty.  

Dynamic 
objects 

The DARPA specifications require that the vehicle pass 
and yield to other vehicles. Since this is a complex task, 
these outputs will also assign probabilistic certainties to 
moving items.  

 
Obviously these latter perception outputs add complexity to the simulator.  
 
2.5 Visualization  

The Visualization module is responsible for generating human interpretable data of the 
inner workings of the entire system. The Visualization module is tightly coupled with all 
the other components. In this regard, the Visualization module can be viewed as library 
used by each of the main components to render interesting information.  

Regardless of the component to be visualized, this module follows a basic pattern: (1) 
create a wrapper that references the module in question. (2) allow the module to operate 
without any awareness of the wrapper, (3) the wrapper will periodically query the state of 
the module and then render a meaningful visualization.  
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Notice that this design pattern eliminates dependencies from the other components to the 
visualization module. This is vitally important to the final implementation because the 
system must operate smoothly without the visualization present. 
 
2.6 Perception 
 
Perception is provided by analysis of the data provided by various sensors external to the 
vehicle: cameras, SICK laser range finder, sonars, GPS, compass, etc., as well as sensors 
embedded in the vehicle (e.g., velocity, odometry, on/off status, etc.).   
 
2.6.1 Internal Perception 
 
Access to sensor data internal to the vehicle is provided by the Pronto4 Retrofit Kit from 
Kairos Autonomi.  This data is integrated into control loops (see Section 1.4). 
 
2.6.2 External Perception 
 
The major external sensory modes are vision and range.  Vision provides continuous 
updates on the external world status, e.g., the existence of on-coming vehicles and the 
detection of the stop line in the lane.  The SICK range finder is used to detect obstacles in 
the path of the vehicle and to the sides and rear.  Finally, sonars provide a simple obstacle 
check in the side and rear directions of the vehicle. 
 
3.0 Hardware Architecture 
 
3.1 Pronto4 Retrofit Kit 
 
The Pronto4 Retrofit kit is a complete implementation of actuators and hardware level 
interfaces for converting any vehicle into a drive-by-wire vehicle for purposes of 
teleoperation or autonomous operation. The Pronto4 is an off-the-shelf item that has 
successfully converted a variety of vehicles to robotic vehicles. The kit has 3 main 
components power, actuation, and computing. 
 
Power:  The Pronto4 power is pulled from the vehicle 12 volt bus and is diverted to 
actuators and also conditioned for use with computers, and sensors. The Pronto4 power 
system also contains a backup battery which is isolated from the vehicle power so it can 
supply the Pronto4 power for approximately 30 minutes in the event of vehicle power 
failure. 
 
Actuation: The Pronto4 includes actuators for throttle, brake, steering and transmission. 
Servo motors are used to actuate the throttle, brake and transmission. The steering is 
actuated by a geared motor with an accompanying encoder. The brake actuators attaches 
to the brake petal via a pull cable such that the servo motor applies the brake the same 
way a human driver does. Our installation of the Pronto4 takes advantage of the native 
vehicle cruise control to tie in the throttle actuator. The transmission actuator ties into the 
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vehicle via a push-pull cable the same way the column shifter does. The steering actuator 
attaches to the steering wheel and braces to the floor to supply torque to the steering 
wheel. A digital signal processor (DSP) is used to issue servo commands to all actuators 
and provides an interface between the actuator hardware and PC based software. 
 
Computing:  The Pronto4 includes a Windows based platform that resides a variety of 
software modules. These modules issue actuator commands to the DSP, manage data 
being returned from the DSP and pull data from sensors. This computer provides the 
entry point for higher level software to interface with the Pronto4 system.  
 
 
3.2 Power System 
 
The design for the power system was based around the idea that given worse case 
scenario loads, the system would adequately provide enough current for the 12 volt and 
120 volt power rails. During the operation of our vehicle, the sole power generation is 
done through our 12 volt alternator. This alternator can provide 120 amps of continuous 
current which equates to just over 1400 watts of useful power. The vehicle uses 20 to 60 
amps of continuous current to operate all the essential equipment built in. This gives our 
equipment about 60 to 100 amps to work with. When designing the system, care was 
taken to make sure the alternator is not overloaded, so that at steady state, the van could 
continuously run a course. 
 
Two 2 kilowatt inverters are used in the system. The inverters allow 120 volt computer 
power supplies and other electronic equipment such as networking routers and switches 
to be operated. The inverters are modified sine inverters which allowed for sensitive 
electronic equipment to be operated. The 12 volt battery’s are in place as a backup in case 
the alternator ceases to operate during the competition or out in the field testing the 
vehicle. The charger supplies power to the entire system, including the vehicles main 
engine battery, when the vehicle is parked and the engine isn’t running.. In addition, to 
the power system, the pronto 4 system has its own 12 volt battery, isolator and other 
electronics for overload safety.  
 
Below is a diagram (Figure 7) of the power system components. It details which 
components were used and in what way they are connected.  
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Figure 7 - Diagram of Power System. 

 
3.3 Network 
 
The network, or backbone, between all the computers in the vehicle, was designed to 
allow a high traffic rate given budget limits of the project. One gigabit cat 6 cabling and 
Netgear gigabit switch is utilized between all the computers in the vehicle. The switch 
was chosen over a passive hub since it allows each connection full bandwidth. 
Theoretically, this allows for one computer to send video data to another, while a separate 
computer can send data to yet another computer with little interference. In addition to the 
fast backbone between nodes, another connection was added using a Linksys wireless 
router. The router allows for an interface to be made with the computers from remote 
locations throughout the lab building making it simple to remotely configure the 
computers. In addition, data may be remotely monitored during testing. The wireless 
router is a developmental device only and can be easily removed for competition events 
such as the site visit, NQE and UFE.  
 
3.4 Computers 
 
Dual core Athlon 64 bit 3800+ CPU’s with 2 gigabytes of system memory and  loaded 
with Windows XP are used in this vehicle. Currently two computers were custom built 
and run the intelligence software and vision software. With the current level of CPU 
usage, two computers adequately run the code and capture data. Each computer utilizes 
about 100 watts. With the design of the network, power and other hardware in the 
vehicle, two more computers may be added with relative ease in the future as demand 
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dictates. Figure 8 shows the computers, Pronto 4 system, network, invertors and charger 
mounted in the vehicle. 
 
 

 
Figure 8 - Computers, Network, Inverters and Charger. 

3.5 E-Stop 
 
The design of the E-Stop was based on the idea of simplicity and feasibility. During the 
initial design stages of the E-Stop system, several solutions presented themselves. The 
solutions varied from $1000 to $4000 in price. The final design kept cost at a minimum 
by utilizing digital RC components. A DX6 2.4 GHz spread spectrum digital receiver and 
transmitter are the core components of the wireless E-Stop system. It was significantly 
cheaper then the alternatives and provided adequate distance between transmitter and 
receiver for our purposes (within .25 mile). The design of the system includes a built-in 
fail safe that if the transmitter power dies or the receiver went out of range, the receiver 
would go to a preprogrammed state. In our case this pre-programmed state is set to 
disable the vehicle. 
 
The receiver interfaces to a set of two relay that actuate the ‘disable’ and ‘pause’ 
functionality built into the Pronto4 system. The activating the ‘pause’ throws a flag in 
software and the specific behavior is governed in software. On the other hand,  the 
‘disable’ functionality is hardware based and its behavior is dictated at the hardware 
level. To the best of our knowledge this configuration meets the requirements of the E-
Stop and is capable of interfacing with the DARPA supplied wireless E-Stop for NQE.  
Figure 9 shows the E-Stop system components and connections. 
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Figure 9. E-STOP Design and Connections. 

 
4.0 Control 
 
The purpose of this control system is to follow a designated path at a given speed on all 
types of road surfaces, e.g., flat roads, up-hill and down-hill.  We report here the design 
of the speed controller and tracking controller as implemented on the autonomous 
vehicle. 
 
4.1 Speed Controller 
 
The challenge in designing a speed controller for an autonomous vehicle is the controller 
must consider both throttle and brake and decide what the appropriate action is for each. 
For example if the vehicle is currently traveling at 30mph and it is desired to reduce the 
speed to 28mph, is the appropriate action to apply the brake or let off the throttle. Also, 
when the vehicle is hovering around the desired speed with little to no throttle applied, it 
is important to avoid controller chatter where the controller rapidly switches between 
throttle and brake.  
 
In determining what type of controller to use for speed control, two types were 
considered PI and PID. Simulations were used for an initial comparison of the two 
techniques, but in the end simple implementation and vehicle testing concluded, albeit 
somewhat qualitatively, the PID had better performance.  
 
The implementation of the speed controller has two note worthy attributes beyond a 
standard PID loop. The both address said issues with switching between throttle and 
brake. First is the mode selector, which makes the decision between actuating the throttle 
or brake. The standard PID would dictate that if the error between the actual speed and 
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desired speed is positive apply the brake and if negative apply the throttle. Our mode 
selector applies a window around the desired speed. The effect is the controller does not 
switch modes when the actual speed falls within the window, instead it continues 
operating in its current mode. This helps prevent the controller from applying the brakes 
if it overshoots the desired velocity by 1 or 2 mph. The second addition was a rate limiter 
on the mode selector. So not only does the actual vehicle speed have to fall outside the 
window of the desired speed, it has to remain outside the window for some specified 
period of time (typically 0.5 to 1 seconds). Again this modification prevents the 
controller chattering between brake and throttle modes. 
 
4.2 Tracking Controller 
 
Our approach to vehicle control is to specify a desired path presented in the form of bread 
crumbs in front of the vehicle. A trajectory tracking controller is then used to follow these 
bread crumbs as closely as possible. The trajectory tracking controller is an 
implementation of a control algorithm presented by Kanayama et al. [19]. This controller 
defines a vehicle posture as  
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The control law is then defined as 
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where rv  and rω  are feed forward terms being the reference velocity and angular 
velocity, respectively, and must be specified as part of the bread crumbs by the path 
planner. Here q is the output vector of the controller and represents the required vehicle 
velocity and angular velocity to maintain the reference path. This velocity is then sent 
down the line to the speed controller that determines, via a PID loop, throttle and/or brake 
commands to achieve the velocity. The angular velocity is directly converted to a steering 
angle using the vehicle kinematic model. 
 
Some deviations from the method presented by Kanayama et al. were necessary in our 
practical implementation of the controller. Most notably, the time dependence of the 
desired path was eliminated converting the trajectory tracker into a path follower and a 
steering saturation was imposed as a function of velocity. Both these changes were made 
to help improve stability of the control scheme.  
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Our initial implementation performed 
well at speeds up to 5 miles per hour. 
The inclusion of the steering saturation 
improved performance and speeds up to 
10 mph were achieved. Additional 
improvements will focus on adding 
constraints to the path planner that take 
into account the rate of the steering 
actuator. The addition of constraints to 
the path planning will guarantee that the 
vehicle is capable of following the 
desired path. 
 
 
5.0 Localization 
 
It is essential for an autonomous vehicle to maintain some knowledge of its state in the 
world. This state consists of its location, heading, speed, etc. Fortunately, there are a 
variety of sensors that can be employed to help determined the vehicle state, i.e. GPS, 
IMU, odometers, compass, etc. In addition the Extended Kalman Filter (EKF) is one data 
fusion tool that can be used to incorporate all sensors into one vehicle state estimate. 
 
Our approach utilizes at minimum a GPS, odometers, and a compass in conjunction with 
an EKF to provide a vehicle state estimate. The advantage of this approach is not in 
greater accuracy but improved robustness. The GPS alone can provide sufficient accuracy 
but temporary GPS outages must be tolerated. The EKF can continue to provide an 
estimated state from other sensors and its internal model, albeit an estimate with greater 
uncertainty, until GPS service is re-acquired. 
 
GPS outages do not pose a great problem in the early phases of the project, and therefore 
extensive efforts have not been allocated to the EKF at this time. Thus currently, our 
localization is entirely dependent on our GPS sensor. However, it is expected that the 
Urban Challenge Final Event and the National Qualifying Event will test our vehicles 
ability to deal with temporary GPS outages and therefore, the full EFK approach will be 
implemented by the NQE. 
 
 
6.0 Results and Performance 
 
This section describes the major features of the system as well as the system 
requirements. 

 
Fig. 12.  Illustration of error posture  where 

e
p = ( 3 , 1, /12π ) 
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6.1 System Requirements 

Our system comes equipped with a simulator that allows the cognition system to run 
without a physical vehicle present. Both the simulator and the cognition system are based 
on Sun’s Java™ technology, and are therefore platform independent.  

The simulator and cognition system can execute in a distributed manner. The different 
components of the system may require fairly expensive computations, and therefore the 
preferred hardware environment requires a dedicated machine to run each component. 
Each of the machines should have the following configurations: 

• Recommended Hardware Requirements  
o 2.0 GHZ processor  
o 1 GB RAM  
o 3D Accelerated Video Card 
o Network Connection  

• Software Requirements  
o Java 1.5  
o Java OpenGL (JOGL)  

The final implementation of the system (i.e., the physical vehicle’s implementation) 
requires minimally this hardware. However, the final implementation will not utilize any 
of the visualization components, so it is unnecessary for those machines to have graphics 
capabilities.  Figure 13 shows various aspects of the instrumented vehicle. 
 

 
 
Figure 13.  Implementation: drive-by-wire (left); SICK & controls (ctr); actuation (right) 
 
6.2 Behaviors  
 
Parse and Interpret Mission & Map files. The Mission and Map files are the pre-
specified inputs into the entire system. The Mission represents the checkpoints that the 
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vehicle must traverse, while the Map is a vector map specifying certain characteristics of 
the load. Our system loads these files and provides a graphical representation of them.  
 
Rudimentary Simulator. The Cognition System is used in the physical vehicle.  
However, it is impractical to develop such a complex system without a way to test and 
tweak it offline. Thus, we have created a simulator to guide development. The 
Rudimentary Simulator encodes the basic physics of the vehicle. It exposes controls to 
other modules and allows them to interact with simulator. The Rudimentary Simulator 
also provides very basic perception capabilities. It includes a very basic graphical 
representation of the vehicle and map. 
 
Navigate the Vehicle in a Straight Line. The system navigates the vehicle in a straight 
line towards a target checkpoint. Although this may seem trivial to human drivers, it 
requires that all components of the system interact effectively.  
 
Stop the Vehicle for Perceived Obstacles. The system uses its perception capabilities to 
recognize obstacles. When an obstacle is perceived, the vehicle will come to a complete 
stop and end the mission. This behavior, although trivial, ensures that the basic 
perception system is functioning 

Navigate through a Sequence of Straight Lines. This feature expands upon the core 
feature. The vehicle navigates through a sequence of straight lines checkpoints. This may 
seem trivial, but it ensures that the system is properly decomposing the map into 
manageable chunks. It also demonstrates the vehicle can distinguish when it has passed a 
checkpoint. This feature implicitly demonstrates that the entire system is working 
properly.  

Pass a Stationary Object on the Left. Given a stationary obstacle in the current lane 
(such as a parked car), the system must plan a path around the obstacle by navigating 
through the left lane. This feature is somewhat complex because it requires use of the 
vehicle’s limited sensor capabilities. This feature demonstrates that the system is truly  

Right Hand Turns: When a vehicle comes to an intersection, it must be able to make a 
right hand turn. This is actually a somewhat complex operation because the perception 
range of the vehicle will not always be able to see the right-turn lane. 

Left Hand Turns: Even more complex will a left hand turn. This is complex because it 
requires the vehicle to navigate through a space in which there are no defined lines or 
markers (e.g., the middle of the intersection). 

Zone/Parking Lot Behavior: Part of the DARPA specifications require the vehicle to 
navigate through an area without any defining traffic lines (such as a parking lot). In this 
scenario, the vehicle must avoid any obstacles en route to the target checkpoint. 
Furthermore, the DARPA specifications require the vehicle to navigate to a specific 
parking spot. This is challenging, especially if there are parked cars on either side.  
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U-Turns/N-Point Turns: When an impassible obstacle is perceived, the system must be 
able to navigate to the other lane and choose a different path. This means the vehicle 
must execute a U-Turn. This implies that the vehicle turns 180˚ in the limited space of the 
road segment. If the road is narrow, then the vehicle must make a sequence of turns (such 
as a three point turn) until it has turned completely around.  

Dynamic Obstacles: Dynamic obstacles (such a moving cars) introduce a fairly complex 
set of behaviors. The system must deduce the speed and trajectory of these obstacles and 
infer whether a specific action is safe or not. For example, making a left hand turn with 
oncoming traffic is difficult enough as a human, it will be much more complex for a 
computer. 

6.3 Some Example Results 

The vehicle has performed well in preliminary trials (see video submitted to DARPA 
[18]): 

• following lanes in the RNDF defined road network, 
• detecting stationary vehicles in the lane, and 
• leaving the lane and passing stalled vehicles. 

A sample image from that run is shown in Figure 14. 

 

Figure 14. Sample scene from video demonstration (stalled vehicle detection). 
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As an example of obstacle and vehicle detection, Figure 15 shows vehicles located in a 
SICK image (in a parking lot).  This data is representative as well of that which will be 
available at intersections and used for precedence determination. 

 

Figure 15. SICK data in Zone area (parking lot) with a vehicle passing from right to left. 
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